
6 days ago
Privacy-Utility-Fairness: A Balanced Approach to Vehicular-Traffic Management System
Location-based vehicular traffic management faces significant challenges in protecting sensitive geographical data while maintaining utility for traffic management and fairness across regions. Existing state-of-the-art solutions often fail to meet the required level of protection against linkage attacks and demographic biases, leading to privacy leakage and inequity in data analysis. In this paper, we propose a novel algorithm designed to address the challenges regarding the balance of privacy, utility, and fairness in location-based vehicular traffic management systems. In this context, utility means providing reliable and meaningful traffic information, while fairness ensures that all regions and individuals are treated equitably in data use and decision-making. Employing differential privacy techniques, we enhance data security by integrating query-based data access with iterative shuffling and calibrated noise injection, ensuring that sensitive geographical data remains protected. We ensure adherence to epsilon-differential privacy standards by implementing the Laplace mechanism. We implemented our algorithm on vehicular location-based data from Norway, demonstrating its ability to maintain data utility for traffic management and urban planning while ensuring fair representation of all geographical areas without being overrepresented or underrepresented. Additionally, we have created a heatmap of Norway based on our model, illustrating the privatized and fair representation of the traffic conditions across various cities. Our algorithm provides privacy in vehicular traffic management by effectively balancing fairness and utility.
Privacy-Utility-Fairness: A Balanced Approach to Vehicular-Traffic Management System
Poushali Sengupta, Sabita Maharjan, Frank Eliassen, Yan Zhang, University of Oslo
No comments yet. Be the first to say something!